Lecture 21. Methods for solving the radiation
transfer equation.
Part 4: Principles of invariance. Adding method.

Objectives:
1. Principles of invariance.
2. Adding method.

Reguired reading:

LO2:6.3.1- 6.3.4, 6.4




1. Principles of invariance

Recall the definitions of reflection and transmission of a layer introduced in Lec.18-19.
If solar flux is incident on a layer of optical depth T*:
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e The principle of invariance for the semi-infinite atmosphere (Ambartzumian,

1940): the diffuse reflected intensity cannot be changed if a layer of finite optical
depth, having the same optical properties as those of the original laver, is added

(see LOZ: 6.3.2).



»~ The principles of invariance for the finite atmosphere (Chandrasekhar, 1950):

(1) The reflected (upward) intensity at any given optical depth T results from the
reflection of (a) the attenuated solar flux = u F,exp(—=7/u,) and (b) the downward
diffuse intensity at the level T
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(2) The diffusely transmitted (downward) intensity at the level £ results from (a) the
transmission of incident solar flux and (b) the reflection of the upward diffuse intensity

above the level T
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(3) The reflected (upward) intensity at the top of the finite atmosphere (1= 0) is
equivalent to (a}) the reflection of solar flux plus (b) the direct and diffuse transmission of

the upward diffuse intensity above the level 1:

u, k. | , g
ITHL;HZMR{ r.,r.r.,r.rD}JrEjT{ T, LU }IT{r.;.r yudu + IT{r”r.r}cxp{—r..-’;.r} [21.3]
T
0
W u / n H
()
R(z,u,u,) ,
IAEN'NS
T
u'=p w'
Tl




(4) The diffusely transmitted (downward) intensity at the bottom of the finite atmosphere
(T=T1) 1 equivalent to (a) the transmission of the attenuated solar flux at the level T plus
(b) the direct and diffuse transmission of the downward diffuse intensity at the level ©
from above:
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2. Adding method

Adding method is an “exact™ technique for solving the radiative transfer equation with
multiple scattering. It uses geometrical ray-tracing approach and the reflection and

transmission of each individual atmospheric layer.

Strategy: knowing the reflection and transmission of two individual layers, the reflection
and transmission of the combined layver may be obtained by calculating the successive

reflections and transmissions between these two layers.

NOTE: If optical depths of these two layers are equaled. this method is referred to as the

doubling-adding method.



Multi-Stream Radiative Transfer

The two major numerical plane-parallel radiative transfer methods both use dis-
crete ordinates and give the same numerical results.

1. Start with the RTE Fourier transformed in azimuth.
2. Replace the scattering integral by a quadrature sum.

3. The RTE becomes a ordinary differential matrix equation.

Radiative transfer equation for each Fourier azimuthal mode m:
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Discrete Ordinates and Quadrature Sums

An integral may be approximated by a quadrature sum
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where i, are the discrete ordinates and w; are quadrature weights.

In Gaussian quadrature, z; are roots of Legendre polynomial Py ().
Weights are w; = 2/{(1 — ,uf’jllpﬂrlf;.z.j}]z}. Weights sum to unity.

Gaussian quadrature is exact for polynomials up to degree 2N — 1.

For plane-parallel RT, double-Gauss quadrature is more accurate.
Double-Gauss: separate quadrature sum for each hemisphere, e.g.
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where yi; are Gaussian angles scaled from (-1,+1) to (0. +1).



Discrete Ordinates Radiative Transfer Equation

Discrete ordinates: 2N streams, N upward and N downward.

Discrete ordinate RTE
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The pluses refer to upwelling, and the minuses to downwelling.
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Matrix Form of Radiative Transfer Equation
Radiances at discrete angles are up and down vectors (I, I7).

The matrix RTE is

(1) (1) (5 £)(1)-(5)

I 1s radiance vector (one hemisphere of u;, one Fourier mode m)

& 1s source vector {e.g. diffuse “pseudo-source™)

M 1s diagonal matrix with 2

P is discrete ordinate phase function matrix (with w/2 and weights ;).
Reciprocity principle: P+ — P~ Pt — p~+
P77 is phase function for upwelling incident and upwelling scattered directions.
P~ is phase function for downwelling incident and upwelling scattered.



Interaction Principle

The RTE is a linear equation in radiance: radiance exitting a layer is linear in
radiance incident upon the layer. Represent radiative transfer in a layer with matrix
equations.

[nteraction principle:
Iy =TI +R Iy +8T Iy =TIy + BRI +5

Iy and I7 are incident radiance vectors,

T 1s the transmission matrix,

R is the reflection matrix,

5 1s the source vector (solar pseudo-source or thermal emission)



Consider two lavers with reflection Ry and R; and total (direct plus diffuse) transmission

[, and T, functions, respectively. Let’s denote the combined reflection and total

ot

transmission functions by Ry; and 7, . and combined reflection and total transmission

functions between layers 1 and 2 by U and D . respectively.
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The combined reflection function Ry 1s

Ry = Ry + T\R,T, + T\RyR\R,T, + T\ Ry R\ RyR R, T, + ... =

=R, + T\ R,T,[1 + RR, + (R R+ .] = [21.5]
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The combined total transmission function 7, 1s
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The combined reflection function U between lavers 1 and 2:

U =TR,+T,R,RR, +T,R,RR,RR, + ... =
=T R,[1+ RR,+ (RR,)*+.] = [21.7]
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The combined total transmission function D between layers 1 and 2:
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From Eqs.[21.5]-[21.8], we find that
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Let's introduce S =R R,(1-RR,)™
Using that T = T +exp(—t/ '), from Eqs.[21.8]-[21.9] we find
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Thus, we may write a system of iterative equations for the computation of diffuse

transmission and reflection for the two layers in the form:

0= RR,

S=0(1-0)"

D=T + ST, +Sexp(—1,/ L)

U=R,D+R,exp(—7,/U,) [21.1
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NOTE: in Eq.[21.12]. the product of two functions implies n integration over the

appropriate angle so that all multiple-scattering contributions are included. For instance
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Numerical procedure of the adding method:

1) As the starting point, one may calculate the reflection and transmission functions of an
initial laver of very small optical depth (e.g., At = 107) that the single scattering
approximation is applicable.

2) Then, using Eq.[21.12], one computes the reflection and transmission functions of the
layer of 2 AT.

3y Using Eq.[21.12], one repeats the calculations adding the layers until a desirable

optical depth is achieved.



Adding-Doubling method.

Initialization
Initialization: get RJT,S properties of infinitesimal layer from matrix RTE.
Use finite difference of RTE {optically thin solution) to get properties for layer
optical depth a7 (e.g. 67 — 1077).
Rt —orM'P™ TH—1-0rM Y1 -P") ST —srMIST

Adding Formula
The properties (R and T" matrices, 5 vector) for a combination of two layers can
be found from the interaction principle.
The adding formula can be derived from multiple reflections:

Ry Ry + T RT) + T Ro Ry BTy + TV Ry Ry Ra R RyTY + .

Ry Ry +TiRy |1 + RiRy + Ry RaR\Ry + .. .| T}

Ry — Ri+ TRy |1 — RiR| Ty

Adding formulas for upwelling radiance (similar for downwelling):

Rf = Rl + TV IRy Ty Tf = Ty'17Ty
St =S+ TS + RyST)
[t = [l — RfR; |}

[ 1s a multiple reflection factor.



Doubling
Doubling: using adding formulas on 1dentical layers.
Doubling formula
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For exponential in optical depth source function:
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After N doubling steps optical thickness is 2V ar.
What 1s optical depth after N — 20 doubling steps?



Doubling-Adding Method
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Addition theorem used to calculate Fourier transformed phase function

Pr=(%py, £pp) at quadrature angles.

. Initialization: local reflection R and transmission 7" matrices for initial layer

o1 made from phase function, etc.

. Doubling: use doubling formula n times to get R, T', S for homogeneous

layer with Ar — 2747,

Adding: use adding formula to combine distinct homogeneous layers and
surface together (surface has T — 1, R — R, 5 — ).

. Use interaction principle to apply boundary conditions and obtain outgoing

discrete ordinate radiances {or internal radiances).



